产品ab测试怎么做(如何使用ab测试,提高产品效率的方法)

AB测试是一个简单的对照实验,对用户进行随机测试来比较同一产品的两个版本,最后分析结果,来确定该产品的哪个版本效果最佳。

 

AB测试证明了潜在的变化能够提高效率,数据能够驱动决策,同时还能带来积极的影响。

 

现今的管理者们只有在证据确凿的情况下才愿意做出决定,别忘了,这年头全靠数据。

 

当然,这也是一件好事,因为当今获取信息的方式很多。

 

AB测试是最常见的方法之一(特别是在在线设置中)。

 

那我们如何才能准确地进行这个实验呢?

 

接下来,我会从AB测试的前、中、后期进行一一进行介绍。

 

​​[微风]AB测试前[微风]


 

 

​[浮云]01​​ 选择要测试的变量(variable)

 

虽然你可能需要测试很多变量,但是,为了能够评估某个被修改的功能,

 

建议你分离出一个自变量(inindependent variable),并对其性能进行测量,

 

不然,你无法确定到底是哪个变量导致了变化。

 

变量可以是一个新按钮,新布局或者一个新图像。

 

​[浮云]​​02 确定测试目标

 

很可能你会需要测量多个指标,但我还是建议你选择一个主要指标来关注,并把它作为因变量(dependent variable)

 

同时,你需要思考在桶测试(the Bucket Test)结束后这个变量的结果。

 

甚至你还可以设置一个假设,并根据这个预测检验你的结果。

 

​[浮云]​​03 创建对照和变量

 

有了自变量,因变量(目标或指标)和所需结果,你就可以利用这些信息来设置对照组(control),通常是一个正在使用的产品。

 

如果你要测试的是一个网页,那么对照组就是现在没更改过的网页。

 

接着,还是以网页为例,设置网页的变量。比如一个新的布局,新的图像等…

 

​[浮云]​​04 随机划分样本组

 

对于那些你能更好控制用户的测试,最好是对两个或多个用户进行分类和定位,这样才能获得更有说服力的结果。

 

具体如何操作,取决于AB测试中你使用的技术和软件。

 

有些商业软件可以帮助你完成这些任务,比如,HubSpot会自动分流你的变体,

 

这样,每个变体都会获得一个随机访问者的样本。

 

​[浮云]​​05 确定样本容量

 

确定样本容量也取决于你用到的AB测试工具,以及运行的对比测试(Split Test)类型。

 

如果你要测试的对象不限数量(比如网络或应用程序),那么测试运行的时间会直接影响到样本容量。

 

所以,你需要让测试运行的时间足够长,才能获取大量数据,

 

否则很难判断“对照”(Control)和“变体”(Variation)之间是否存在明显的统计差异。

 

​​​[浮云]06 决定结果的显著性

 

一旦选择了目标指标(因变量),就要考虑变化的显著要达到多大,才会选择“变体”(Variation),而不是保持“对照”(Control)

 

变化越剧烈,我们对过程中的科学性要求就越低。

 

而变化越具体(如改变按钮颜色、新图像等),测试就应该越科学,因为这些变化可能不会对转换率产生显著的影响。

​[浮云]​​07 单次运行一个测试

 

同时测试的多个事项会让结果复杂化。

 

比如,如果你对一个登陆页面进行AB测试,

 

同时又对一个邮件活动进行对比测试(Split Test)

 

那你怎么能知道是哪个变化导致了潜在用户的增加呢?

​​[微风]AB测试中[微风]


 

 

​[浮云]08 使用AB测试工具

 

要想在网页或邮件中做AB测试,你需要用到工具。

 

其中,最受欢迎的两个是HubSpot Enterprise和Google Analytics。

 

​[浮云]​09 同时测试两种变量

 

当你运行对比测试(Split Test)时,需要同时运行“对照”(Control)和“变体”(Variation),否则你可能会怀疑你的结果。

 

但也有例外,比如在你测试的时候,想找到最佳发送电子邮件的时间,这就不需要同时进行。

 

​​[浮云]10 保证测试时间充足

 

确保测试的运行时间足够长,才能够获取充足的样本容量。

 

否则很难判断这两个版本是否存在明显统计差异。

 

获得有统计学意义的结果可能需要几小时、几天或几周。

 

而获得这一结果所耗的时间,很大程度上取决于有多少流量,或者有用户在使用你的网页或应用。

 

​[浮云]11 征求真实用户的反馈

 

AB测试与定量数据之间有很大关系,但这对于理解人们的行为并不会有太大帮助。

 

征求他人意见最好的方法,就是通过投票或民意调查。

 

你可以在自己的网站上添加一个离站调查(exit survey),询问用户为什么没有点击某个行动召唤(call to action)

 

或者在感谢页面上添加一个调查,调查用户为什么会点击某个按钮或填写表格。

 

​[微风]AB测试后[微风]


 

 

​[浮云]​​​12 专注于你的目标指标

 

虽然你可能会测量多个指标,但是在进行分析时,还是要把重点放在主要的目标指标上。

 

​[浮云]​​13 衡量结果的显著性

 

分析数据,并确定哪个变体的效果更好,“对照”(Control)还是“变量”(Variation)

 

之后,再评估你的结果有没有统计意义。

 

换句话说,就是它们能够充分证明变体的合理性吗?

 

​​[浮云]14 视结果量力而行

 

如果一种变量比另一种变量更有统计学优势,那么你就达到了目的。

 

之后,可以在平台中通过禁用丢失变量(losing variation)来完成测试。

 

如果两种变量都没有在统计上达到很好的效果,你就会明白你测试的变量并不会影响结果,这时,一定要把测试标记为不确定。

 

在这种情况下,坚持测试对照组,或运行其他测试。

 

你可以使用这些失败的数据来帮助你确定新测试中的迭代。

 

​[浮云]​15 计划下一次AB测试

 

刚刚完成的对比测试(Split Test)可能会帮助你发现一些提升营销内容、网页或应用效率的新方法,

 

但是,不要止步于此,因为你还有很多提升空间。

 

要留心并把握机会,提高转化率、增加潜在客户。

 

你需要确保你设置的测试是合理的,也要知道如何去评估测试的结果,

 

这样才能自如运行AB测试,获得出色的结果。

 

感谢你的阅读!

产品ab测试怎么做(如何使用ab测试,提高产品效率的方法)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发表评论

登录后才能评论